少女祈祷中...

C、Forsaken City

从后往前贪心, 取最大值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include <bits/stdc++.h>
#define int long long

void solve() {
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
int ans = 0;
for (int i = n - 2; i >= 0; i--) {
ans = std::max(ans, a[i] - a[i + 1]);
a[i] = std::min(a[i], a[i + 1]);
}
std::cout << ans << '\n';
}

signed main() {
int t = 1;
std::cin >> t;
while (t--) solve();
return 0;
}

F、The Correlation

一次操作可以使两个奇偶性相同的两个数相等, 最多执行n - 1 次可以使得最多存在两个不i同的数 x, y, 再取 (x + y)/ 2, 最后所有数的差不会超过 1, 所以答案就是 奇数个数 * 偶数个数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <bits/stdc++.h>
#define int long long
const int MOD = 998244353;

void solve() {
int n;
std::cin >> n;
std::vector<int> a(n);
int ans1 = 0, ans2 = 0;
for (int i = 0; i < n; i++) {
std::cin >> a[i];
if (a[i] & 1) {
ans1++;
} else {
ans2++;
}
}
std::cout << (ans1 * ans2) % MOD << '\n';
}

signed main() {
int t = 1;
// std::cin >> t;
while (t--) solve();
return 0;
}

G、Nice Doppelgnger

打表找规律, 输出全部素因子个数都为奇数的数字

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <bits/stdc++.h>
#define int long long

const int PRIME_N = 1000010;
int st[PRIME_N];
int primes[PRIME_N];
int cnt;
void fun()
{
for (int i = 2; i < PRIME_N; i++)
{
if (!st[i])
{
st[i] = i;
primes[cnt++] = i;
}
for (int j = 0; i * primes[j] < PRIME_N; j++)
{
st[i * primes[j]] = primes[j];
if (i % primes[j] == 0)
break;
}
}
}

void solve() {
int n;
std::cin >> n;
int ans = 0;
for (int i = 2; i <= n; i++) {
int j = i;
int cnt = 0;
while (j > 1) {
int c = 0;
int p = st[j];
while (j % p == 0) {
c++;
j /= p;
}
cnt += c;
}
if (j > 1) cnt++;
if (cnt & 1) {
std::cout << i << ' ';
ans++;
if (ans == n / 2) {
break;
}
}
}
std::cout << '\n';
}

signed main() {
fun();
int t = 1;
std::cin >> t;
while (t--) solve();
return 0;
}

J、Ivory

设 b < d, e = gcd(a, c), xe = a, ye = c :

gcd(a^b,c^d) = gcd(x^b * e^b,y^d * e^d) = e^b * gcd(x^b,y^d * e^(d−b))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <bits/stdc++.h>
#define int long long
const int MOD = 998244353;

int qui(int a, int b, int MOD = MOD) {
int res = 1;
while (b)
{
if (b & 1)
res = res * a % MOD;
b >>= 1;
a = a * a % MOD;
}
return res;
}

int dfs(int a, int b, int c, int d) {
int ans = 1;
int g = std::__gcd(a, c);
if (g == 1) {
return 1;
}
if (b > d) {
ans = qui(g % MOD, d);
int t = c / g;
if (t == 1) {
return ans;
}
return ans * dfs(a, b - d, t, d) % MOD;
} else {
ans = qui(g % MOD, b);
int t = a / g;
if (t == 1) {
return ans;
}
return ans * dfs(t, b, c, d - b) % MOD;
}
}

void solve() {
int a, b, c, d;
std::cin >> a >> b >> c >> d;
int g = std::__gcd(a, c);
int ans = dfs(a, b, c, d);
std::cout << ans << '\n';
}

signed main() {
int t = 1;
std::cin >> t;
while (t--) solve();
return 0;
}

A、Loopy Laggon

把n * n的矩阵转化为一维数组处理, 顺时针旋转 90度就是 取两个数交换了 12次, 每次交换会使逆序对数量增减 奇数个, 旋转后逆序对奇偶性不变, 逆序对数量一定是偶数。如果被破坏过的一套玩具, 随便放的话, 有 1 / 2 的概率逆序对为奇数个, 所以如果一套玩具逆序对全是偶数个,那这套玩具被破坏的概率是 1 / 1024, 所以只要逆序对数量为 奇数个直接认为是被破坏的即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <bits/stdc++.h>
#define int long long

bool check(std::vector<int>& a) {
int cnt = 0;
for (int i = 0; i < a.size(); i++) {
for (int j = i + 1; j < a.size(); j++) {
if (a[i] > a[j]) cnt++;
}
}
return (cnt & 1);
}

void solve() {
int id, m, k, n;
std::cin >> id >> m >> k >> n;
std::vector<std::vector<std::vector<int>>> a(m, std::vector<std::vector<int>>(k, std::vector<int>(n * n)));
for (int i = 0; i < m; i++) {
for (int j = 0; j < k; j++) {
for (int z = 0; z < n * n; z++) {
std::cin >> a[i][j][z];
}
}
}
std::string ans;
for (int i = 0; i < m; i++) {
int f = 0;
for (int j = 0; j < k; j++) {
if (check(a[i][j])) {
f = 1;
break;
}
}
if (f) {
ans += '1';
} else {
ans += '0';
}
}
std::cout << ans << '\n';
}

signed main() {
int t = 1;
// std::cin >> t;
while (t--) {
solve();
}
return 0;
}